

Bulkhead

A Bulkhead is an engineered concrete wall (ranging from 10 - 20 feet long) placed inside a mine opening to retain water inside the mine workings.

LONGITUDINAL CROSS SECTION OF BULKHEAD

Koehler Tunnel Bulkhead

Purposes of Bulkheads

Control and prevent acid mine drainage / Restore hydrology

Water storage and flow control for water treatment

Unplanned Release Prevention

Benefits of Bulkheads

Can prevent the formation of Acid Mine Drainage

Prevent or reduce the need of perpetual water treatment.

The risk of unplanned releases of water is minimized.

- American Tunnel and associated bulkheads impounded 1,500 gallons per minute.
- The amount of water that might be treated has been reduced

Drawbacks of Bulkheads

Water quality could get worse

Acid mine drainage could move to a less desirable location for water treatment

Difficult to monitor the effectiveness of bulkheads on water quality in complex systems

Difficult to monitor the bulkhead structure remedy because it is underground

Control Acid Mine Drainage/ Restore Hydrology

Instead of perpetual water treatment, water is permanently impounded in the mine workings.

Restores or closely mimics the natural hydrology of the mountain prior to mining

Example: Koehler Tunnel

Acid Mine Drainage

Pyrite + Water + Oxygen = AMD

Plugged-Tunnel Scenario

Mine attributes advantageous to a bulkheading approach:

- Reasonably good access to underground workings
- Bulkhead can be placed on lowest adit level of mining
- Simple(r) mine system with little connections with other mines, (may need more than one bulkhead for complex systems)

- Lowest level is a cross-cut haulage/drain tunnel, not a drift on the vein structure
- Adequate overburden to hold expected water pressure.
- Good rock quality
- Good location within workings, free of geologic structures

Mine Attributes

Red and Bonita

- Lowest level of workings
- Adequate overburden pressure
- Mine workings were easily re-opened are competent and safe
- Good rock quality
- Good location available within workings for bulkhead

Mine Attributes

Gold King Level 7

- Lowest level of workings
- Adequate overburden pressure
- Mine working currently not accessible, potentially a lot of work to re-open
- Unknown rock quality, expecting less than ideal.
- Partly a cross cut, but through poor rock near portal.

Water Storage and Water Control

Water storage and control bulkheads are used to impound water inside the mine workings, but the valve is open to allow a set amount of water out of the workings, typically for water treatment.

There may be an optimal water elevation in the mine to keep the entire hydrologic balance of the mountain stable.

Example: Red and Bonita (for now), numerous other across the state

Minimizing Unplanned Releases

All bulkheads, if designed and maintained properly, would have the ability to prevent or minimize unplanned releases.

Bulkheads in the Upper Animas

13 Bulkheads in Bonita Peak Area

Koehler Tunnel Bulkhead

Ransom

Sunbank (2)

- 3 bulkheads in American Tunnel
- 2 bulkheads on B Level Sunnyside Mine
- 2 bulkheads F Level Sunnyside Mine
- 2 bulkheads in Terry Tunnel
- 2 bulkheads Gold Prince in Placer Gulch
- 1 bulkhead in Mogul Mine
- 1 bulkhead in Red and Bonita

Picture 5. Bypass pipe (lower left) and 3/4-inch water sampling and pressure sampling pipe (right). Note combination thrust plate/waterstops and wire ties. American Tunnel bulkhead #2.

American
Tunnel
Bulkhead
#2

1/21/2020, Prepared by Kirstin Brown, CDRMS

BULKHEADS IN THE UPPER ANIMAS

0 0.5 1 2 3 4 Miles

Legend

DRMS Bulkhead Evaluation of Upper Animas

9 bulkheads under evaluation.

5 out of the 9 were visually inspected in 2017

- American Tunnel Bulkhead #3
- Koehler Tunnel Bulkhead
- Mogul Bulkhead

- Red and Bonita Bulkhead
- Gold Prince Bulkhead #2
- Terry Tunnel Bulkhead #1
- Ransom Tunnel Bulkhead
- Sunbank Bulkheads (2)

Bulkhead Failure Mechanisms

Excessive leaking through rock surrounding the bulkhead

Chemical degradation of the concrete through reactions with acidic mine water

Highly unlikely to fail structurally due to design inputs

Highly unlikely to fail through hydraulic fracturing of the surrounding rock mass due to design inputs.

Bulkhead Review Focus

Nature and extent of leaks in the surrounding rock mass

The condition of the concrete at the exposed face of the bulkhead

Condition of all penetrations through the bulkhead (pipes, gauges, etc.)

When Bulkheads "Leak"

Impounded water can:

- + Go back to natural fractures and pathways disseminated through the bedrock.
- Leak around the bulkhead and back into the tunnel and out the portal.
- Preferentially discharge out of a fault or fracture connected to surface
 - concentrated flow of acid mine drainage at surface.
- Preferentially flow out of a higher mine opening

Causes of Bulkhead Leaks

Constructed in drift workings-can't seal the structure

<u>Bad ground</u>; fractured, jointed or bedded formation- *numerous water pathways around* bulkhead

Not enough overburden thickness (distance underground from surface)- the mine pool leaks into near-surface fractured-rock aquifer

Poor construction or no formation grouting when it is warranted-bulkhead leaks badly

<u>Unknown mining or natural structural connections to other workings-</u> <u>unanticipated discharges</u> from other mine openings

American Tunnel Portal

Bulkheads "Leak" back through Natural Pathways

Ideal Situation - Groundwater returned to pre-mining levels

Groundwater comes out natural pathways, faults, and fractures

What goes in must come out!

The natural pathways can filter and "clean" (natural attenuation) the water.

No need to prevent this type of "leaking"

Koehler Tunnel

Leaking Around the Bulkhead

Approximate Flows Around Bulkheads:

American Tunnel - 80 gpm

Mogul - 50 gpm

Koehler - 5 gpm

Sunbank - 15 gpm

Ransom - 1 gpm?

Gold Prince - 3 gpm

Terry Tunnel - 7 gpm

Red and Bonita - 300 gpm - bulkhead open

Leak Prevention Around the Bulkhead

Ring Grouting / Formation Grouting

Inject grout into the rock formation around the bulkhead

DRILLING PATTERN FOR FORMATION GROUTING

Rings of grout holes used to seal fractures and pathways in rock formation around bulkhead zone

DRILLING PATTERN FOR WATER BEARING FAULT OR FRACTURE SYSTEM

Ring of grout holes used to treat fault or fissure

Koehler Tunnel during Fracture Grouting

Preferential "Leakage" at a Fault or Fracture

Bulkheads can cause impounded water to preferentially flow out of a fault or fracture connected to surface.

Although the fault/fracture is a natural pathway, a large amount of acid mine drainage could flow from the fault/fracture.

Depending on the location of the fault or fracture, grouting could be attempted.

If grouting is not possible, and the fracture is flowing too much, water levels behind the bulkhead may have to be lowered by releasing water from behind the bulkhead.

Flow out of Higher Mine Openings

Flow may come out higher mine openings

Other mine openings may be connected through:

Natural pathways

Large faults and fractures (also natural)

Direct mine connections / tunnels / drifts / shafts

Via drill holes

Continue to bulkhead higher openings or manage the water level in the mountain

Gold King Level 7 2008

Bulkheads Conclusion

Bulkheads can be used for different purposes:

- Control and prevent acid mine drainage / Restore hydrology
- Minimize Flows and minimize metals loading, potential for water treatment.
- Water storage and flow control for water treatment
- Unplanned Release Prevention

Not Bulkheads!

VS.

Black Hawk Portal

Ponds

Underground Mining in Silverton, CO

Started in 1871 and ended in 1991

Over 3,000 mines located on topography maps

Approximately 500 mines located by USGS in PP 1651

125 + draining mines sampled

56 draining mines sampled in Animas for the 2016 DRAINING MINES STATEWIDE INVENTORY

48 Mines and Mineral Processing Sites Listed on BPMD National Priority List

About a dozen have had unplanned releases worth noting

Sampled Draining Mines Legend ★ Draining Mines 1.75 Animas Watershed

Map of kno

Draining Mines Inventory 2016 Legend ▲ DrainingMinesBrown

Map of dra

Silver Hat Telluride, CO

Silver Wing BPMD Site

Silver Wing BPMD Site

Silver Wing BPMD Site

Natalie
Occidental
Unplanned
Release at
Confluence of
Animas and
Cement Creek
2016

Impoundment Modes

- Near surface collapse
- Collapse inside mine workings
- Sludge Dams
- Ice Dams
- Clogging Pipes
- Ponds

- Snow/Avalanche
- Beaver Dams
- Combination of factors can occur

None of these are bulkheads

30+

Near Surface Collapses

Natural processes, freeze thaw near surface

Rock Quality / Geology near surface

Permeability

Thickness / Extent of collapse (unknown)

Water Quality and amount of precipitates formed

Permeability

- Can change through time
- Continual clogging of pore space diminishing permeability

Senator 5' above the floor of the mine

Permeability

How clogged can the pore spaces become?

How much water can be backed up behind nonengineered, unknown earthen dams?

What could cause failure?

How much time does it take to overwhelm the system?

Collapse Inside Mine Workings

Collapse Inside Mine Workings

Dinero Tunnel Leadville, CO

Ice Dams

SLUDGE dams

Silver Ledge / Natalie

Occidental

Clogging Pipes

Snow or Ice

Beavers

Unplanned Release Causes

- Equipment operation
- Mining Activity
- Dewatering
- Drilling
- Clogging Pipes
- Failure of near surface collapse

- Failure of underground
 Beaver dam failure collapse
- Fresh underground collapses
- Landslides
- Ice dam release
- Sludge dam release

- Stormwater and high flows destabilization of system
- Avalanche backing water up and releasing

Proximity

Roads

People

Receiving Streams

Environment

- Camping below the portal
- Fish downstream in South Mineral
- Less traveled road

- Historic structure holding waste rock back below portal
- No fish in Cement Creek

Data gaps to address

- Mine maps
- water volume estimates
- Head Pressure Measurements
- Hydrology
- Conditions underground
- Precipitate

- accumulation rate
- Interior mine volume for Precipitate mineralogy
 - Pipe clogging rates
 - Pond construction and stability
 - Landslide, avalanche, flood plain understanding related to
 - sites

- Flow variations at sites
- Proximity to fish populations
- Size of collapses at portals

Solutions

- Provide "managed" drainage path or maintain tunnel to stay open
- Drill into mine workings to monitor head pressure/provide a safe way • to pump water out
- Air Curtains (ice dams)
- Institutional Controls
- Institutional controls to

- prevent equipment operation. near portals
- Control water levels with engineering
- Source Controls prevent water from being impounded •
- Active maintenance of mine Source Controls sites (yearly)?
- Geophysics to determine extent of impounded water

- Analyze flow data from sites to determine concerning changes
- Install remote flow metering at sites
 - Humanely manage beavers

Koehler Ground Control

Ground control

Control water levels

EPA's Goals

- 1. Water Quality Improvements
- 2. Stabilize Source Areas
- 3. Minimize Unplanned Releases
- Provide data about listed sites to support Goal 3

